Note
Go to the end to download the full example code.
Qualifying results overview¶
Plot the qualifying result with visualization the fastest times.
import matplotlib.pyplot as plt
import pandas as pd
from timple.timedelta import strftimedelta
import fastf1
import fastf1.plotting
from fastf1.core import Laps
# Enable Matplotlib patches for plotting timedelta values
fastf1.plotting.setup_mpl(mpl_timedelta_support=True, misc_mpl_mods=False,
color_scheme=None)
session = fastf1.get_session(2021, 'Spanish Grand Prix', 'Q')
session.load()
First, we need to get an array of all drivers.
drivers = pd.unique(session.laps['Driver'])
print(drivers)
['HAM' 'VER' 'BOT' 'LEC' 'OCO' 'SAI' 'RIC' 'PER' 'NOR' 'ALO' 'STR' 'GAS'
'VET' 'GIO' 'RUS' 'TSU' 'RAI' 'MSC' 'LAT' 'MAZ']
After that we’ll get each driver’s fastest lap, create a new laps object from these laps, sort them by lap time and have pandas reindex them to number them nicely by starting position.
list_fastest_laps = list()
for drv in drivers:
drvs_fastest_lap = session.laps.pick_driver(drv).pick_fastest()
list_fastest_laps.append(drvs_fastest_lap)
fastest_laps = Laps(list_fastest_laps) \
.sort_values(by='LapTime') \
.reset_index(drop=True)
The plot is nicer to look at and more easily understandable if we just plot the time differences. Therefore, we subtract the fastest lap time from all other lap times.
pole_lap = fastest_laps.pick_fastest()
fastest_laps['LapTimeDelta'] = fastest_laps['LapTime'] - pole_lap['LapTime']
We can take a quick look at the laps we have to check if everything looks all right. For this, we’ll just check the ‘Driver’, ‘LapTime’ and ‘LapTimeDelta’ columns.
print(fastest_laps[['Driver', 'LapTime', 'LapTimeDelta']])
Driver LapTime LapTimeDelta
0 HAM 0 days 00:01:16.741000 0 days 00:00:00
1 VER 0 days 00:01:16.777000 0 days 00:00:00.036000
2 BOT 0 days 00:01:16.873000 0 days 00:00:00.132000
3 LEC 0 days 00:01:17.510000 0 days 00:00:00.769000
4 OCO 0 days 00:01:17.580000 0 days 00:00:00.839000
5 SAI 0 days 00:01:17.620000 0 days 00:00:00.879000
6 RIC 0 days 00:01:17.622000 0 days 00:00:00.881000
7 PER 0 days 00:01:17.669000 0 days 00:00:00.928000
8 NOR 0 days 00:01:17.696000 0 days 00:00:00.955000
9 ALO 0 days 00:01:17.966000 0 days 00:00:01.225000
10 STR 0 days 00:01:17.974000 0 days 00:00:01.233000
11 GAS 0 days 00:01:17.982000 0 days 00:00:01.241000
12 VET 0 days 00:01:18.079000 0 days 00:00:01.338000
13 GIO 0 days 00:01:18.356000 0 days 00:00:01.615000
14 RUS 0 days 00:01:18.445000 0 days 00:00:01.704000
15 TSU 0 days 00:01:18.556000 0 days 00:00:01.815000
16 RAI 0 days 00:01:18.917000 0 days 00:00:02.176000
17 MSC 0 days 00:01:19.117000 0 days 00:00:02.376000
18 LAT 0 days 00:01:19.219000 0 days 00:00:02.478000
19 MAZ 0 days 00:01:19.807000 0 days 00:00:03.066000
Finally, we’ll create a list of team colors per lap to color our plot.
team_colors = list()
for index, lap in fastest_laps.iterlaps():
color = fastf1.plotting.get_team_color(lap['Team'], session=session)
team_colors.append(color)
Now, we can plot all the data
fig, ax = plt.subplots()
ax.barh(fastest_laps.index, fastest_laps['LapTimeDelta'],
color=team_colors, edgecolor='grey')
ax.set_yticks(fastest_laps.index)
ax.set_yticklabels(fastest_laps['Driver'])
# show fastest at the top
ax.invert_yaxis()
# draw vertical lines behind the bars
ax.set_axisbelow(True)
ax.xaxis.grid(True, which='major', linestyle='--', color='black', zorder=-1000)
Finally, give the plot a meaningful title
lap_time_string = strftimedelta(pole_lap['LapTime'], '%m:%s.%ms')
plt.suptitle(f"{session.event['EventName']} {session.event.year} Qualifying\n"
f"Fastest Lap: {lap_time_string} ({pole_lap['Driver']})")
plt.show()
Total running time of the script: (0 minutes 1.290 seconds)